In vivo phosphorylation of adaptors regulates their interaction with clathrin

نویسندگان

  • A Wilde
  • F M Brodsky
چکیده

The coat proteins of clathrin-coated vesicles (CCV) spontaneously self-assemble in vitro, but, in vivo, their self-assembly must be regulated. To determine whether phosphorylation might influence coat formation in the cell, the in vivo phosphorylation state of CCV coat proteins was analyzed. Individual components of the CCV coat were isolated by immunoprecipitation from Madin-Darby bovine kidney cells, labeled with [32P]orthophosphate under normal culture conditions. The predominant phosphoproteins identified were subunits of the AP1 and AP2 adaptors. These included three of the four 100-kD adaptor subunits, alpha and beta 2 of AP2 and beta 1 of AP1, but not the gamma subunit of AP1. In addition, the mu 1 and mu 2 subunits of AP1 and AP2 were phosphorylated under these conditions. Lower levels of in vivo phosphorylation were detected for the clathrin heavy and light chains. Analysis of phosphorylation sites of the 100-kD adaptor subunits indicated they were phosphorylated on serines in their hinge regions, domains that have been implicated in clathrin binding. In vitro clathrin-binding assays revealed that, upon phosphorylation, adaptors no longer bind to clathrin. In vivo analysis further revealed that adaptors with phosphorylated 100-kD subunits predominated in the cytosol, in comparison with adaptors associated with cellular membranes, and that phosphorylated beta 2 subunits of AP2 were exclusively cytosolic. Kinase activity, which converts adaptors to a phosphorylated state in which they no longer bind clathrin, was found associated with the CCV coat. These results suggest that adaptor phosphorylation influences adaptor-clathrin interactions in vivo and could have a role in controlling coat disassembly and reassembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serine Phosphorylation of HIV-1 Vpu and Its Binding to Tetherin Regulates Interaction with Clathrin Adaptors

HIV-1 Vpu prevents incorporation of tetherin (BST2/ CD317) into budding virions and targets it for ESCRT-dependent endosomal degradation via a clathrin-dependent process. This requires a variant acidic dileucine-sorting motif (ExxxLV) in Vpu. Structural studies demonstrate that recombinant Vpu/tetherin fusions can form a ternary complex with the clathrin adaptor AP-1. However, open questions st...

متن کامل

Clathrin binding by the adaptor Ent5 promotes late stages of clathrin coat maturation

Clathrin is a ubiquitous protein that mediates membrane traffic at many locations. To function, clathrin requires clathrin adaptors that link it to transmembrane protein cargo. In addition to this cargo selection function, many adaptors also play mechanistic roles in the formation of the transport carrier. However, the full spectrum of these mechanistic roles is poorly understood. Here we repor...

متن کامل

Transcytosis of NgCAM in epithelial cells reflects differential signal recognition on the endocytic and secretory pathways

NgCAM is a cell adhesion molecule that is largely axonal in neurons and apical in epithelia. In Madin-Darby canine kidney cells, NgCAM is targeted to the apical surface by transcytosis, being first inserted into the basolateral domain from which it is internalized and transported to the apical domain. Initial basolateral transport is mediated by a sequence motif (Y(33)RSL) decoded by the AP-1B ...

متن کامل

Understanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach

Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...

متن کامل

Btn3 regulates the endosomal sorting function of the yeast Ent3 epsin, an adaptor for SNARE proteins.

Ent3 and Ent5 are yeast epsin N-terminal homology (ENTH) domain-containing proteins involved in protein trafficking between the Golgi and late endosomes. They interact with clathrin, clathrin adaptors at the Golgi (AP-1 and GGA) and different SNAREs (Vti1, Snc1, Pep12 and Syn8) required for vesicular transport at the Golgi and endosomes. To better understand the role of these epsins in membrane...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 135  شماره 

صفحات  -

تاریخ انتشار 1996